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We prove a Goldstone-type theorem for a wide class of lattice and continuum 
quantum systems, both for the ground state and at nonzero temperature. For the 
ground state (T = 0) spontaneous breakdown of a continuous symmetry implies 
no energy gap. For nonzero temperature, spontaneous symmetry breakdown 
implies slow clustering (no L 1 clustering). The methods apply also to nonzero- 
temperature classical systems. 
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1. I N T R O D U C T I O N  

Given a physical system with short-range forces and  a cont inuous symme- 
try, if the ground state is not  invariant  under  the symmetry  the Golds tone 
theorem states that the system possesses excitations of arbitrarily low 
energy.(1,2) In  the case of  the ground state (vacuum) of local quan tum field 
theory, the existence of an energy gap is equivalent to exponential  cluster- 
ing. (3) In  this f ramework the Golds tone theorem was proved in Refs. 4 and 
5. For  general ground states of nonrelativistic systems, the two properties 
(energy gap and  clustering) are, however, independent  and, in particular, 
the assumption that  the g round  state is the unique vector invariant  under  
time translations does not  necessarily follow from the assumption of 
spacelike clustering, as remarked in Ref. 6. This point  was not  taken into 
account  in the assumptions of Refs. 7 and  8. Another  related aspect, of 
greater relevance to our discussion, is the fact that  the rate of clustering is 
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not expected to be related to symmetry breakdown and absence of an 
energy gap, since for example the ground state of the Heisenberg 
ferromagnet (6~ has a broken symmetry and no energy gap, but is exponen- 
tially clustering (for the ground state is a product state of spins pointing in 
a fixed direction). On the other hand, for T > 0 no energy gap is expected 
to occur, at least under general timelike clustering assumptions (Ref. 12, 
Proposition 3); these assumptions may be verified for the free Bose gas. (~3~ 

At nonzero temperature it is the cluster properties that are important 
in connection with symmetry breakdown. At nonzero temperature we may 
then formulate the Goldstone theorem as follows. Given a system with 
short-range forces and a continuous symmetry, if the equilibrium state is 
not invariant under the symmetry, then the system does not possess 
exponential clustering. 

It is our purpose to explore the validity of the Goldstone theorem for a 
wide class of spin systems and many-body systems, both for the ground 
state and at nonzero temperature. The main tool we will use at nonzero 
temperature is the Bogoliubov inequality, which is valid for both classical 
and quantum systems (see, for example, Ref. 9). We shall, however, present 
the discussion in the framework of quantum statistical mechanics. At zero 
temperature our method is related to that of Ref. 7, where a version of the 
theorem was proved, valid for one space dimension. A different proof, valid 
for the ferromagnetic Heisenberg Hamiltonian of finite range, and in 
greater analogy to the quantum field theory proofs of Refs. 4 and 5, was 
given in Ref. 6, and generalized in Ref, 8 to quantum spin systems of finite 
range. Our methods apply also to nonzero temperature classical systems, 
for which related results were obtained in Refs. 14 and 15. 

Our results apply to states which are invariant with respect to spatial 
translations by some discrete set which is sufficiently dense. (For lattice 
systems this could be a sublattice, and for continuum systems, a lattice 
imbedded in the continuum.) More precisely, we require the following 
condition. 

Condition e. There is a constant l such that for all sufficiently large 
cubes A, 

rlAel/IA I/> 1 

where IAI is the volume of A and IAel is the number of points in 
A e = A N E .  

We will prove that for interactions which are not too long range (see 
Sections 3 and 4 for examples), for the ground state (T = 0) spontaneous 
breakdown of a continuous symmetry implies no energy gap. For nonzero 
temperature (T > 0) spontaneous symmetry breakdown implies no expo- 
nential clustering (in fact no L ~ clustering). 
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For a continuous system our results cover the case of the breakdown 
of translational invariance. However, at T = 0 and nonzero densities there 
is never an energy gap due to the breakdown of Galilean invariance as 
remarked in Ref. 11. 

Finally, we should like to stress that, although we present an informal 
treatment of the continuum case, our results for quantum spin systems are 
complete and rigorous. 

2. GENERAL FRAMEWORK 

The state of the system is described by the vector ~2 in some Hilbert 
space. There is a symmetric Hamiltonian operator H and H ~  = 0. To each 
cube A c •d there is a set of observables 9/A such that [ A , B ] - - 0  if 
A E 9/&, B �9 9/& and AI ,A 2 are disjoint. The set of all observables is 
~ /=  UAgAA. We define A = A - (~2,Af]). We suppose A~2 is in the domain 
of H for all A �9 9/. 

Let r ,  denote spatial translation by x. (In the continuum case x �9 R d 
in the lattice case x �9 zd.) The state f~ is invariant under translations in the 
discrete set s satisfying condition s of the introduction. Thus 

(~, ~i A ~) = (~, A ~) VA ~ ~t, V, �9 e 

There is a one-parameter group of symmetry transformations o s of 
commuting with the Hamiltonian and with all spatial translations: 

o~HAf~ = Ho~A~ 

o~r x = rxO ~ Vx  E ~d (Vx �9 7/d) (2.1) 

We suppose the symmetry o s is generated by a current 

 xJo 

where J0 �9 ~0 (lattice case); J0 �9 9/~ (continuum case); and A is a cube of 
side 8. (In the continuum case we may suppose Jx is smooth in x by first 
averaging the current over the small cube A.) 

Thus, if A �9 9/A 

where 

dds ~=o (f]'~ = i(~, [ JA ,A]~  ) 

JA = ~ Ji (lattice case) 
i ~ A  

JA = fA8 ddx Jx (continuum case) 
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and A s is a set of points within distance 8 from A. By the group property, 
the invariance of s under the symmetry o s follows from 

(a,  [ JA ,A]a )  = 0 

for all A E ~a ,  and all cubes A. The equilibrium property of s is given as 
follows: 

(a) T = 0: s is a ground state; i.e., (4, H~) > 0 for all ~p in the domain 
of H. 

(b) T > 0: s satisfies the Bogoliubov inequality; i.e., for all A, B E ~, 

1 (a,  [ B * , B ] a )  I(a,[B,A]a)I 2 < B (s189 +AAt)fl)7 
where B = i[H, B]. Note that ( i / i ) ( s  [B t,/~]~) may be written in the form 
(B s HB ~) + (B ts HB * s  

The basic hypothesis about the state s which leads to the absence of 
symmetry breaking is as follows: 

(a) T = 0: there is an energy gap E > 0, i.e., (4, Htp)> e for all �9 in 
the domain of H, orthogonal to s ][~1[ = 1. 

(b) T > 0: there is L I clustering; i.e., for each observable A, 

X I(a,A*ri Aa) - (s163 < ~ 

The basic strategy is as follows. For each self-adjoint observable 
A ~ gA0 define 7 = d/dsl,=o(a, OsAa). We must show y = 0. Now by the 
translation invariance of s with respect to E we have for each cube A (and 

Osr i = t i e s )  

1 d s=O(s ~_ ,riAs r -  lad ds iEA~ 

where A t = A • E and [Ael is the number of points in E. 
Thus 

j~Ae J ] 

where 

----- U riAo 
i@A 

We estimate ~, as follows: 
(a) T = 0: 

4 " ,, t" ,, . \ 
1712< ] - ~ - ( J F ,  a, Jg.a)/ 2 "riAa, • ' r jAs 
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A 

Now for any observable B, (~, B ~ ) =  0. Thus the assumption of an 
energy gap e > 0 implies 

(Ba, Ba) < • (Ba, HBa) 
s 

- -  A.~ A < l [ (~a,n~a) + (e  a, He*a)] 
E 

_ I (a, [e*,B]a) ( a , [ e * , [ u , e ] ] a )  = 

, ,  /.11 (,) 

(b) T > 0: using the Bogoliubov inequality, 

Notice the similarity of inequalities (,) and (**). 
In one case the coefficient involves r ,  the inverse temperature. In the 

other case the coefficient involves 1/e, the inverse gap. 
To prove the absence of symmetry breakdown we will show in both 

cases (T = 0 and T > 0) 

1 (~,[J~:,J~]f~)-->0 as A ~ R  d 
(I) IAel 

and 

1 ~ 7"jA~ 2 < C uniformly in A 
(II) IAel /+A: It 

(I) follows essentially from properties of the Hamiltonian. (II) follows 
from L 1 clustering (T > 0) or from properties of the Hamiltonian and the 
energy gap (T = 0). Indeed from L 1 clustering, and invariance of ~ under 
~.,j  + g, 

1 Z rj.4~ 2< ~, I(~'A~sAf~) _ (~,AU)(e, AU)I < o, 
IAel j+A~ j+e  

In the case T = O, from the energy gap E, we have 

lAd ~A~ iu ]X~ ~'[s~6~ ,,~a~ j I 

< - (r~, ] r 0 1  

Thus 
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The finiteness of the sum over ~ will follow from properties of the 
Hamiltonian. 

The system is said to have property G r if sup ~ [(s Jj,jk].q)l-->01 
~ j ~ Z  a k~"~ a 

sup X l(a,[Jj,J~]a)l-->o as D;~oo 
j ~ Z  d kE7/d 

Ik-jl >1 D 
o r  

i f , d , /  r ; 7  ~, 
sup ]a71~2, lJx,avlf~Jl< oo and 

sup f ddy](s163 as Dl"oo 
x E ~ a  l y - x i > D  

The system is said to have property G O if property G r holds and for 
each self-adjoint observable A, 

Z I(a,[A,~A]s < oo 
k E E  

We may now state Goldstone's theorem in the following form: 

Theorem 1. (a) T = 0: If the system possesses an energy gap and 
property G o then there is no spontaneous symmetry breakdown. 

(b) T > 0: If the system possesses L ~ clustering and property Gr then 
there is no spontaneous symmetry breakdown. 

Proof. We must show that (I) follows from 

sup f d~v I(s [ J.,@ ]s D ~ O  
x ~ R a  l y - x ] > D  

case is analogous.) Write j . (x ,y )=  (f~,[J~,Jy]s Then, by (The lattice 
property G r, 

Now 

f ddyl~(x, y)[< oo and sup f ddyl~(x, y)[ D >0 
x ~ R  [y-xl>>-D 7 ~  

f d I ~d ,=o(a,/4o, s y a ) ( * * * )  jddx y)= is o(a,o, 4a)= = o 
Also by the Jacobi identity ~(x,y)=~.(y,x) .  Then since IAe[ > llA I 
> (I/]Ao[)[S_ I we estimate 

I ll (a'[sx'&]a)= -flfddxd xx (x)xx (Y) (x'Y) 
_ 1 fd xd%l• 21S.I 
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where Xa is the characteristic function of A, using (***). Thus 

1 ( a , [ j ~ & ] a )  I .< 1 

We write 

dA i dA2 

whereA 2 is the set of points in A, within distance D of the boundary and 
A 1 = A, - A 2. 

Then 

(2.2) ~< sup flx-yI> D day I~(x' Y)[ + ~ [A21 sup ( d ~ v  I~(x, Y)I 
x I A I  x - 

The first term goes to zero by property G r and the second term goes to 
zero since 

rA21 
- -  - ~  0 

The theorem gains content by analyzing when property G r or G o 
holds. This will be done in the following sections. 

3. QUANTUM SPIN SYSTEMS 

The interaction ~ is determined by specifying for each finite X E Z d 
the "connected" X-body interaction r 91 x. The Hamiltonian H is 
then defined by 

n A a =  E [ @ ( X ) , A ] a  
x N A o ~ O  

for A E ~Ao. Let D(X) denote the diameter of X: 

D ( X ) - -  sup l i - j l  
k , j ~ X  

and 

Theorem 2. The system satisfies GT and G o if 

sup ~ IXl II~(x)ll < ce 
i x ~ i  

sup ~ IXll l~(X)ll~0 
i X ~ i  

D ( X )  >1 d 

as d.ace 

Note that if the interaction is translation invariant [q)(X + i) = ' r i ( I ) ( X ) ]  
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then the above follows from 

E IXl II'I'(X)ll < ~ 
x ~ 0  

If furthermore the interaction is at most N-body @(X) = 0 if IXi > N] 
then the above is equivalent to Ex~0ll~(x)tl < ~ .  In particular for the 
Heisenberg Hamiltonian E J ( i -  j)oio j we require ~]+e~lJ(i)i < ce. 

Proof. (a) We must show 

sup ~] I(a, [4,L]a)lo);0 
j E Z  d k ~ Z  d 

I k - j l  > D 

N o w  

E ll[4,Jk]ll-< 
k 

Ik-Jl/> D 

E E 1114,[+(X),Jk]]11 
k x ~ k , j  

Ik-jl >1 l) 

< 4[IJoll 2 ~ ~ II~(S)ll < all/oil 2 ~ [XLll~(s)[[ 
k x ~ k , j  x ~ j  

I k - j l  >1 D D(X)> D 

which goes to zero as D?oo by the hypothesis of the theorem. 
(b) We will show ~,je~l(~,  [A, ~jA]fl)[ < oo for each observable A. The 

proof is similar to (a). Let A ~ g[&. 

E II[A,TjA][[<41IAII 2 E E I[g,(X)ll 
j ~ y a  j E z a  X N ~'jAo:/: O 

X N A o r  

+ 411AJI 2 ~ ~'~ II~(X)II 
j X N ~'jAo-~O 

Aon ~'jAo ea O 

~< 4][A[[21Ao[sup ~ [XI N~(X)[I 
i X ~ i  

+ 4[[A H21AoI2[Ao[ sup ~ II~(X)ll 
i X ~ i  

< 81lall2[Ao[3Sup ~ [XIIIC'(X)II [] 
i X ~ i  

4. CONTINUUM SYSTEMS 

In this section we will proceed in an informal way, emphasizing the 
procedure and type of estimates. In the continuum case unbounded opera- 
tors will arise and, having constructed a particular equilibrium state, it 
would be necessary to verify that the correlation functions are indeed well 
defined. 

The Goldstone theorem is applicable to local quantum fields at zero 
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and nonzero temperature. Indeed, properties G r and G O are immediate 
consequences of the finite propagation speed. 

Nonrelativistic many-body systems may also be treated. We consider 
first the breakdown of an internal symmetry in a translation-invariant 
system at nonzero temperature. The Bose and Fermi cases are treated in the 
same way. A particle with M internal degrees of freedom is described by 
the field operators 

eej(x), j = 1,2 . . . .  , M 

which satisfy 

[ vj(x),  q,**(y) ] _+ = ~j, ~ (x - y) 

Let o l . . . . .  a g be the self-adjoint M • M matrices of a representation 
of the Lie algebra of a compact semisimple Lie group ~ with (totally 
antisymmetric (1~ structure constants: 

[aa,  o/~] = iF~Bor 

Define 

po(x) = E ~ ( x ) ~ ( x )  
jk 

We also write this as ~*(x)o~9(x). The operators p~(x) are the local 
generators of the Lie group transformations on the fields qsk(x ). 

The Hamiltonian has the form H = Ho + V -  IzN, where 

~m 1 f aox �9 V%(x) no = ~ v~J(x)  _ 

v= E f d'xa~ :o~176 : v (x -  y) 

If the internal symmetry ~ is spontaneously broken, then the absence 
of Ll-clustering would follow from 

f dy r(a, < 
where 

Jy = f d 'xh(y  - x)p~(x) 

and h is a smooth function of compact support and 

f d~xh(x)-- 1 
With 

l (xIptoa vxIs - 2xtt taaxlZ) J"(x)  = ~-~ __ 



764 Landau, Perez, and Wresz|nski 

we have the following algebraic relations which hold in both the Bose and 
Fermi case: 

i[t/0,p~(x)] = - v_E. s~(~,) 

[N,o~(x)]--0 

+ i r ~ * J ~ ( y ) 8 ( x  - Y)  

[O~(y),[p~(x), VII = 8(y- x) E F ~ W  

• f a: v(x - : ) :  [o%),p~(z)] +: 

- E r ~ r ~ v ( ~ - y ) :  [p'(x),o~(y)] +: 
~va 

where we have used 

p~(x)pP (y) := p ~(x)pl3 (y) - 8(x  - y)'~(y)o~o~xk(y) 

To show 

f yL(a,[ 04]a)l< 
we need only consider the nonlocal term 

E r ~ P W v (  x - y ) ( a ,  : o'(x)p~(y): a )  

So if 

f aylv(x - y)l i(a, : p~(x)p~(y): a)l < 

the result follows. 
We note that there is a qualitative difference between Abelian and 

non-Abelian groups since in the Abelian case F~ p = 0 and only local terms 
occur. {A similar analysis applies to the T = 0 case, although here the 
distinction between Abelian and non-Abelian groups does not arise because 
the term (~2, [A, "riJl ]~) will in general have a term with V(x - y) even in the 
Abelian case.} 

We consider now the breakdown of translation invariance. We will for 
simplicity not consider internal degrees of freedom, so that now 

H = H o + V - / z N  
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where 

u0 = ~1  f d~ _v ~+(x) �9 _v ~(x) 

o(x) = ~,+(~).(x) 

N =fd"xo(x) 

v= f a"xa"y V(x - y )  :p(x)o(y): 

The local generator of the translation group is 

1 j(x) = ~ [~/?(x)V~(x) - V~?(x)~(x)] 

We consider the case T > 0 with similar conclusions for the 
T = O .  

We must show 

SUpx ~ - xr> o ay [(a, [ 4(,c),Jk(y) ]a)l ~,> 0 

with 

Now 

J~(x) = f d"yh(x - y)A(y) 

<[ H, A(x)] - ask,(x) ,+(x)f any ok V(x - y>(y)~(x) 

where 

sk,(x) = - �89 [Oy(x)O,~(~) + o,~t(x)O~,(x)] 

c a s e  

+ ~ [v'~+(x)~(x) + 2 v~+(x). _V)(x) + #t(x)V,~(x)] 

where 

0 V(~) 
0~v(~) - 0~k 

Now since Skl is a local term it will not contribute to the estimate, as 
DToo 

[/k(x), [ v , /~(y)]  ] = 21 - v~k(x - y) :  p(x>(y) :  

+ f a> v,,(: - y): o(z)o(y) : a(x - y)] 
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where 

d~V(~) 
v~k(~) - - -  

Thus the only term of importance in the estimate is 

sup( ay. Iv~(x -y)ll(u, : p(x)p(y):u)L 
x Jly-xl>~D 

Thus if 

and 

the result follows. 

sup [ (~ ,  : p ( x ) p ( y ) :  ~)[ < r162 
x,y 

f axlVk~(x)l < 
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